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Abstract 

The goal of Disaster Risk Management (DRM) is to ensure that society continues to function, 

thrive, and recover quickly despite shocks arising from natural or human actions; to ensure, in 

short, that natural hazards do not become disasters. Success in the world of DRM means 

’nothing happens,’ but this poses a dilemma towards recognising and incentivising successful 

DRM interventions since they are made invisible by the very nature of their success. How then 

do we highlight and learn from successes if we do not see them? Likewise, how do we 

incentivise policymakers to make better risk-informed decisions when they are not credited 

for pro-active actions nor accountable for the consequences of doing nothing? This study 

discusses four types of situations where successful DRM interventions are made invisible:  (i) 

success made invisible in the midst of broader disaster, (ii) success made invisible by nature 

of the success, (iii) success made invisible due to yet unrealised benefits, (iv) success made 

invisible due to the randomness of the specific outcome. We propose the use of probabilistic 

counterfactual analysis to calculate and highlight the ‘probabilistic lives saved’ from disaster 

risk management interventions, that would otherwise remain unnoticed. Two case-studies are 

provided, a school seismic retrofit program in Nepal and a cyclone evacuation effort in India. 

An important conclusion that emerges from these studies is that the value of risk reduction 

interventions should not be judged on the basis of specific outcomes, but on the basis of a 

broader exploration of potential outcomes. The shift in focus from realised outcome to 

counterfactual alternative provides a framework to identify and learn from successes in DRM, 

and reward individuals and institutions who have displayed political bravery in committing to 

the implementation of DRM measures despite invisible benefits. 
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Introduction & Motivation 

The goal of Disaster Risk Management (DRM) is to ensure that society continues to function, 

thrive, and recover quickly despite shocks arising from natural or human actions; to ensure, in 

short, that natural hazards do not become disasters. Disasters are “social in nature” — they 

stem not solely from the hazard, but from the interactions of the physical, built and social 

environments (Mileti, 1999). The extent of a disaster can be characterized by loss of life 

(Moore, 1958), as well as considerable damage and social, political and economic disruptions 

(Smith, 2005). DRM efforts try to ensure that such disaster elements are avoided (i.e. ‘nothing 

happens’), but this poses a dilemma for recognising and incentivising successful DRM 

interventions since they are made invisible by the very nature of their success.  In addition, if 

the benefits of DRM actions manifest primarily as reduced impact when a hazard event occurs, 

these benefits may only be realised far in the future — particularly for rare and extreme events. 

Hence relying on the realisation of a disaster to evaluate mitigation efforts ignores the 

significant time delay between the investment in DRM and the hazard. When a large hazard 

event which ‘tests’ mitigation actions does occur, both news and research tend to focus on 

losses caused by the catastrophe, and very rarely is a past mitigation intervention revisited for 

analysis. 

How then do we incentivise policymakers to make better risk-informed decisions when they 

are not credited for pro-active actions nor accountable for the consequences of doing nothing? 

There is a pressing need to develop better frameworks to judge the successes of DRM 

interventions, both to recognise and celebrate good decisions as well as to create incentives 

for further investment in mitigation. Literature suggests that celebration of past successes can 

benefit disaster risk reduction. For instance, inspirational visions can be key components of 

transformations to sustainability or resilience by helping communities articulate their values 

and desired futures (Wiek and Iwaniec, 2014). This can even help shape the very reality they 

forecast or explain. Focusing attention on these successes offers a novel way forward because 

it can help sustain and amplify efforts that already exist, and enable learning from positive 

examples rather than hyperfixation on the many negative ones which dominate the news and 

research literature (e.g. Leach et al., 2012). Shedding light on otherwise invisible benefits of 

successful DRM interventions is crucial to the achievement of large-scale transformations 

(Scott, 1998). 

In this paper, we focus on four types of situations where successful DRM interventions are 

made invisible: 

1) Success made invisible in the midst of broader disaster. Successful mitigation 

may result in fewer losses after a disaster, but this success is obscured amid the 

catastrophe and losses that were still incurred. 

2) Success made invisible by nature of the success. A hazard becomes a disaster on 

account of the impacts it has on society. If mitigation efforts are so successful that 

there are no perceivable impacts, both the potential disaster and the successful 

mitigation are made invisible. 

3) Success made invisible due to yet unrealised benefits. On account of the large 

time delay between the mitigation intervention and its benefits being realised, 

mitigation efforts could be seen as unsuccessful or unnecessary until a hazard event 

occurs. 
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4) Success made invisible by the randomness of the specific outcome. Hazards are 

stochastic processes, hence any single occurrence is only one of several possibilities 

that could have occurred. Recognising that the parameters of the event that actually 

occurred could easily have been different, successes can be made invisible if the 

hazard randomly does not strain mitigation measures, e.g. a near-miss. 

To address these invisibilities, we develop and demonstrate a novel application of probabilistic 

counterfactual risk analysis to highlight and celebrate successful DRM interventions based on 

counterfactual outcomes rather than realised past outcomes or unrealised future outcomes. 

The systematic implementation of such analysis would enable us to (i) build a collection of 

case studies of past interventions that feature well-articulated, specific, implemented, and 

measured successes towards a safer, more resilient future, (ii) give a quantitative measure 

that focuses on celebrating benefits of intervention, independent of the specific occurrence of 

the hazard event against which the intervention was implemented, (iii) provide a means for 

crediting policymakers for sound decisions, even if the benefits of these decisions are not felt 

till much after decisions were taken, (iv) monitor progress in disaster risk reduction 

independent of the realised outcome of such interventions. 

The potential stakeholders for this framework are multiple. Policy-makers (central and local 

governments) can be incentivized to invest more in risk reduction, by making visible to their 

constituents the benefits of such investments, even if these benefits are not realized. The 

framework would also enable disaster risk management practitioners to learn from positive 

lessons (rather than negative ones), which can be emulated in similar contexts. It can also 

serve donors as a means to evaluate projects and monitor progress, even if no tangible 

benefits are seen until a disaster strikes. 

The paper is organised as follows. In Section 2, we draw on research on risk perception and 

social psychology, as well as the political aspects of disaster policy to highlight some of the 

challenges faced in evaluating disaster risk measures. This motivates our proposed 

framework of probabilistic counterfactual analysis. In Section 3, we introduce the framework 

in the context of DRM. Two case studies are used to illustrate the framework in Section 4: a 

school earthquake retrofitting program in Nepal and the evacuation of coastal communities in 

India prior to the landfall of a major cyclone. These showcase the different types of situations 

where successful DRM interventions are made invisible and the applicability of the method for 

different hazards. To provide further examples of where the method can be applied, we also 

provide a list of sample DRR measures. These include instances where successes are made 

invisible due to yet unrealised benefits, and cover different hazards as well as geographical 

regions. In Section 5, we discuss our results from our case studies as well as possible 

extensions and limitations. Finally, we conclude in Section 6 by summarising the work and its 

implications. 
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Risk perception and the invisibility of DRM 

Even though effective mitigation of extreme events is both possible and already happening, 

there are many challenges faced in recognising and evaluating them. 

If disaster risk management interventions are successful in their goal to eliminate or reduce the 

impacts of hazards on society, fewer people will experience the impacts of disasters. 

Research on risk perception has shown that people significantly underweigh low-probability 

events they do not have experience with (Tversky and Kahneman, 1973; Hertwig et al., 2004; 

Newell et al., 2016). This results in a strange paradox: the more mitigation efforts help 

successfully avoid disasters, the more we might underweight the risks posed by hazards and 

extreme events. This invisibility of mitigation successes is further exacerbated by the 

perception of disasters as the result of hazards that overwhelm societies - rare events, or “acts 

of god” for which it is impossible to prepare (Gaillard, 2019). 

The field of social psychology provides further insight into why DRM evaluation   is often so 

challenging. Research has shown that people’s emotional responses to events are influenced 

by their perception of “what might have been” (Medvec et al., 1995; Roese and Olson, 2014). 

A disaster event is a break from normalcy that triggers imaginations of alternative realities or 

counterfactuals: What if the disaster had never happened? What if it had hit a neighbouring 

town instead? In the aftermath of negative experiences, these counterfactuals are usually in 

an “upward” direction, where one imagines a better outcome than the realised outcome (Blix et 

al., 2016), e.g. thinking about the ways in which one could have avoided a car accident. 

Perceiving the benefits of mitigation, however, often requires comparing reality to a worse 

outcome or “downward counterfactual”, which is not a natural cognitive process, e.g. 

imagining a car accident happening on a routine trip to work. Further, counterfactuals are 

typically triggered by shock or surprise (Epstude and Roese, 2008; Kahneman, 1995). When 

a disaster has not happened yet or has been so successfully avoided that the hazard event is 

not perceived as a disaster, this “trigger” is missing. 

Another challenge faced in recognising successful mitigation measures is that good DRM 

decisions are made invisible by the fact that they are evaluated only against the outcome that 

occurs instead of all possible events that could have occurred. The extreme case occurs when 

success has not been realised because the hazard has not occurred. As with many actions 

to mitigate climate change, DRM interventions require immediate sacrifice for seemingly 

uncertain benefits at a much later time (Weber, 2006). This time delay means that mitigation 

successes are rendered invisible until the eventual realisation of a hazard; excepting situations 

when mitigation measures also introduce co-benefits, which are a crucial part of effective 

DRM and which we discuss further in our conclusion. 

Probabilistic counterfactual analysis addresses the aforementioned challenges faced in 

evaluating disaster risk measures. By accounting for alternative scenarios with their 

associated probabilities and explicitly identifying how a mitigation measure decreases the 

impact on society, it counters the natural cognitive perceptions which hinder the way people 

process risk and hence measure and evaluate mitigation successes. Since the framework can 

also be applied to measures for which success has not been realised to consider all possible 

future scenarios, it can quantify the long-term benefits of DRM decisions. It is essential that 

we invest in disaster mitigation, especially given the increasing frequency of disasters in the 

context of climate change (Jha et al., 2011). However, doing so in the light of the time delay 

between the intervention and its benefits combined with the invisibility of successful risk 
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reduction means that decisions   to invest in mitigation require remarkable political bravery. If 

these decisions are not recognised and rewarded, the interventions may be seen as ineffective 

or unnecessary with potentially disastrous consequences. Probabilistic counterfactual 

analysis provides a framework to rightly assess these difficult decisions. 

Highlighting success in disaster risk management through 

counterfactual analysis 

Counterfactual Analysis and DRM 

The concept of counterfactual analysis is an old one. It is indeed closely linked to the analysis of 

causality theory in philosophy (Todorova, 2015), and often associated with 20th century 

theorising on “possible worlds” used in formal logic, philosophy, linguistics and more (Lewis, 

2005). Counterfactual analysis typically starts with the creation of “what if...” scenarios, around 

which alternative branches of history can be explored. Combining counterfactual analysis with 

probabilistic methods, we can further constrain the scope of potential alternative branches of 

history by accounting for their relative probabilities based on best available data. 

The idea that realised history is but one among many alternative “worlds” is a useful concept 

that supports our application of counterfactual analysis to shed light on invisible benefits of 

disaster risk management. Through this lens, in cases A and B of Figure 1 we shed light on 

successes made invisible in the midst of broader disaster and successes made invisible by 

nature of their success by comparing a past disaster (realised history) to an alternative world in 

which a particular DRM intervention was not implemented. In case C of Figure 1, we shed light 

on successes made invisible due to yet unrealised benefits by comparing a past with no hazard 

event (realised history) to alternative worlds where hazard events occurred according to their 

probability-magnitude characteristics (obtained from probabilistic hazard analysis). In case D 

of Figure 1, we shed light on successes made invisible due to the randomness of specific 

outcomes by comparing a past hazard event that had relatively small consequences (realised 

history) to alternative worlds representing the full spectrum of potential realisations   of that 

hazard event. Each of these cases are examples of downward counterfactual analysis, where 

the alternative realisation is worse, to demonstrate the value of DRM interventions. 

The use of counterfactual analysis has received growing attention in the disaster risk 

management field, though mostly to highlight failings in DRM rather than successes. 

Counterfactual analysis has been used to provide a way to capture the range of outcomes 

due to highly uncertain and random variables in a small but growing variety of applications 

including earthquakes (Woo and Mignan, 2018; Lin et al., 2020), climate change (Shepherd 

et al., 2018), terrorism and cyber security (Woo et al., 2017; Oughton et al., 2019), and volcanic 

eruptions (Aspinall and Woo, 2019). In previous applications, counterfactual exploration of 

alternative hazard events at different times of day, locations, or magnitude/intensity have shown 

that randomness plays a large role in the specific consequences of hazard events (Woo, 2019; 

Lin et al., 2020). Downward counterfactual risk analysis has been used primarily to point out 

worse potential outcomes for the purpose of insurance, preparedness, or future mitigation 

(e.g. Woo, 2019; Lin et al., 2020; Aspinall and Woo, 2019). We propose the use of downward 

counterfactual analysis to quantify improvements in resilience or celebrate past successes in 

DRM: this marks a fundamental shift in the application of counterfactuals  in risk analysis. By 

focusing on celebration of past successes, this work presents a novel domain of application of 

counterfactual disaster risk analysis beyond highlighting potential worse outcomes and failures 

in DRM.  
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Figure 1. A schematic of invisibilities in mitigation successes using stilt houses as the mitigation and 
flooding as the hazard. 
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Counterfactual Analysis and Risk Analysis 

Risk can be broadly defined as the likelihood of future undesired consequences produced from 

potentially damaging events such as natural hazards. The most common framework to quantify 

risk expresses it as a function of three distinct but interrelated 

components (UNISDR, 2009): (A) Hazard, which refers to the likelihood of potential damaging 

events, (B) Exposure, which refers to the location and attributes of community assets such as 

people, buildings and infrastructure and (C) Vulnerability, which refers to the susceptibility of 

the exposure to sustain impact or harm for a given hazard intensity. Thus, risk can be seen as 

a function of a set of parameters that characterise each of the three components. 

In the counterfactual analysis framework, the first step is to characterise the factual, realised 

event, around which counterfactuals can be defined and analysed (e.g. Lin et al., 2020). The 

impact resulting from the realised event should be characterised in terms of its relevant risk 

parameters: 

𝐼𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑 =  𝑓 (𝜃𝐻 , 𝜃𝐸 , 𝜃𝑉) , (1) 

 
where 𝜃𝐻 are the hazard parameters (e.g. magnitude of the event, its location, time etc.), 𝜃𝐸 

are the exposure parameters (e.g. location of buildings and the number of people exposed), 

and 𝜃𝑉 are the vulnerability parameters (e.g. structural building characteristics, social 

vulnerability characteristics, etc.). 

This then sets the basis for exploring alternatives where a single or multiple of the risk 

parameters are modified in order to define a new, counterfactual event: 

𝐼𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙 =  𝑓 (𝜃𝐻 + 𝛿𝐻 , 𝜃𝐸 + 𝛿𝐸 , 𝜃𝑉 + 𝛿𝑉) , (2) 

where 𝛿. are the variations over one or many of the parameters that defined the original past 

event. 

In most situations, we will treat the factual realised event as deterministic, where all parameters 

𝜃𝐻 , 𝜃𝐸, 𝜃𝑉 are known and fixed. Alternatively, we may want to treat some parameters as fixed 

and some as unknown. However, it is often useful to explore a broad range of counterfactual 

events, accounting for their relative probabilities. This is then an application of the risk analysis 

framework to counterfactual analysis. In this setting, some of the parameters in equation 2 are 

unknown, but with known probability distributions (e.g. frequency-magnitude curves of 

earthquake occurrence). The probability of each counterfactual alternative is then associated 

with the joint-probability of unknown parameters. In practice this rarely has an analytical 

formulation, and is calculated by means of simulation (e.g. Monte-Carlo simulation). 

Comparing the realised event (fixed or probabilistic) to the distribution of counterfactual events 

enables us to quantify the benefits (B) of positive actions towards risk mitigation (see equation 

3 and Figure 2). 

 
𝐵 =  𝐼 –  𝐼𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙                                         (3)
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Figure 2: Conceptual diagram of the counterfactual risk analysis framework. 

 

In our demonstration, we measure the benefits of DRM intervention in terms of probabilistic 

lives saved. Indeed, the reduction of mortality is the first target indicator within the Sendai 

Framework For Disaster Risk Reduction (UNISDR, 2015), reflecting the primary goal of global 

DRM practice to save lives. We also note that our approach is similar to the measure of ’years 

of life saved’ by medical interventions that is calculated systematically in the field of public 

health (Tengs et al., 1995). Similar analysis could be conducted for measuring reduced losses 

in financial terms, as is often the case in cost-benefit analysis, though these analyses have the 

tendency to highlight ”successful” DRM interventions as those that protect high-value areas 

rather than high-vulnerability areas, often exacerbating inequities (Markhvida et al., 2020; 

Lallemant et al., 2020). 

Case studies – Celebrating success 

We illustrate the use of probabilistic counterfactual analysis to highlight invisible benefits of 

DRM, and also to demonstrate its capability to adapt to a wide range of hazards and DRM 

interventions. The two case studies in this section were chosen as they exemplify three of the 

invisibilities highlighted in the paper, cover two major hazards, and two very different types of 

DRM interventions (structural upgrading and early-warning respectively). The first case study 

focuses on a school earthquake retrofitting program in Nepal. It illustrates Case A of Figure 

1, where a very successful risk reduction program was made invisible amid the tragedy of a 

broader catastrophe. The second case study focuses on the evacuation of coastal 

communities in India prior to a major cyclone making landfall. It illustrates Case B and D of 

Figure 1, where the benefits of the massive evacuation is made invisible by nature of it having 

been so successful (i.e. news focuses on perceivable losses thus rarely highlights avoided 

disaster), and partially obscured by the lesser severity of the actualised hazard compared to 

that expected at the time. Finally, we finish this section by presenting a list of DRM 

interventions that fit Case C in Figure 1 - interventions with invisible successes due to yet 

unrealized benefits. This illustrates the diversity, creativity and broad geographic coverage of 

important DRM interventions which deserve to be highlighted, analysed and learned from. 
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Seismic retrofit of schools in Nepal 

Event description 

On Saturday, April 25, 2015 at 11:56am local time, a Mw 7.8 earthquake occurred about 80 

km northwest of Kathmandu, the capital of Nepal (Hayes et al., 2017). It was followed by 

numerous aftershocks (Goda et al., 2015; Prakash et al., 2016). According to the Post-Disaster 

Needs Assessment, the Nepal earthquake resulted in 8,790 casualties, 22,300 injuries, and 

over 8 million impacted persons (about one-third of the population of Nepal) in 31 districts, 

resulting in an estimated 7 billion U.S. dollars of direct economic losses (Nepal NPC, 2015). In 

the education sector, 8,242 public schools were affected, including 25,134 fully destroyed 

classrooms and 22,097 partially damaged (Nepal NPC, 2015). 

Before the event, the risk of such a large earthquake in the region is well known. It has been 

hypothesised that the recurrence interval of a “great Himalayan earthquake” (Mw > 8.0) is 

between 750 ± 140 and 870 ± 350 years on average in the east Nepal region (Bollinger et al., 

2014). At the location of the 2015 earthquake, the last major earthquake was in 1344. And 

since the last destructive Nepal earthquake in 1934, studies have  hinted strain buildup towards 

Kathmandu (Goda et al., 2015; Prakash  et al., 2016). 

DRM intervention 

Amidst Nepal’s high seismic hazard and predominance of vulnerable non-engineered building 

construction (BCPR, 2004; Rodrigues et al., 2018), Government of Nepal recognized the need 

for earthquake-safe construction to reduce school vulnerability. In this work, we highlight the 

number of lives saved by the timely intervention of the School Earthquake Safety Program 

(SESP), a school retrofit program initiated in 1997 by the National Society for Earthquake 

Technology (NSET) and continued through the Nepal Safer Schools Projects (NSSP) by the 

Department of Education (Marasini, 2019). Prior to the earthquake, NSET reported that a 

majority of public schools were built via construction techniques using unsafe materials such 

as non-reinforced adobe, stone rubble in mud mortar, and brick in mud mortar (NSET, 2000). 

The safety of Nepal’s public school buildings is particularly important, as they serve as 

emergency shelters, housing tents and sites for medical services (Dixit et al., 2014). 

Furthermore, the collapse of a school building can cause intense psychological impacts to 

community members and especially children, and the return to school for students provides a 

sense of normalcy after a disaster (Dixit et al., 2014). 

The primary aim of the School Earthquake Safety Program was to raise earthquake safety 

awareness in Nepal through outreach and capacity building amongst teachers, students, and 

parents, and to strengthen school buildings through seismic retrofitting by local masons 

(NSET, 2012). The first seismically retrofitted school was completed in 1999. By the time of the 

Nepal earthquake in April 2015, 300 schools were retrofitted, 160 of which were in the most 

affected districts. Among the 160 retrofit schools in  the affected districts, 125 reported no 

damage, with 35 only reporting hairline cracks on plaster. Notably, none of the retrofitted 

schools collapsed or needed major repairs (Marasini, 2019). Our dataset shown in Figure 4 

contained information on 70 of the 300 retrofitted schools (OpenDRI, 2012).
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Figure 3. For each of the 70 retrofitted school buildings shown as circles on the map, PGA  (in %g) are 
extracted as hazard input, and the daytime occupancy (represented by the size of the circles) are used to 
estimate the probabilistic fatalities. The dataset also contains physical characteristics that indicate 
potential for collapse (e.g. construction typology, number of stories, fragility curves). 

 

 
Probabilistic counterfactual analysis 

The downward counterfactual analysis is applied through a probabilistic approach to estimate 

building collapse for two scenarios: (1) the realised case where all 70 school buildings of 

interest were retrofitted, and (2) a counterfactual case where the school buildings are not 

retrofitted. For each school, we estimate the probability of exceeding a collapse damage state 

based on the following modelling parameters: 

1) Earthquake hazard in terms of peak ground accelerations (PGA) generated using the 

USGS Global ShakeMap system (Wald and Allen, 2007), 

2) School building characteristics including location, daytime occupancy, number of 

stories, and construction typology (OpenDRI, 2012) 

3) Fragility curves describing the probability of collapse given the earthquake shaking 

intensity and construction typology. For the unretrofitted schools,collapse fragility 

curves were adopted from a study on earthquake mitigation in Kathmandu Valley before 

the Nepal Earthquake (JICA and MOHA, 2002). For retrofitted schools, we assumed a 

collapse fragility curve for a specially designed RC building from the same JICA and 

MOHA (2002) study. For the complete values of the fragility curves as two-parameter 

lognormal distribution functions, for all 70 schools in the analysis, see Rabonza et al. 

(2020). 
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We then implemented a Monte Carlo simulation, generating 30,000 realisations of Bernoulli 

trials of collapse based on the estimated collapse exceedance probabilities (probability of 

collapse for each building at the ground motion intensity estimated from the 2015 earthquake). 

To obtain a distribution of probabilistic fatalities, we obtained school building occupancy data 

(OpenDRI, 2012) and assumed a 20% fatality rate consistent with NSET’s calculations for 

masonry and reinforced concrete buildings (Coburn and Spence, 2002; NSET, 2000). For the 

first scenario, the realised case, we use fragility curves to estimate collapse probability 

exceedance corresponding to a retrofitted building, whereas for the second scenario, we 

assume that the whole building stock consists of unretrofitted buildings and use unretrofitted 

fragility curves. For a complete description of the modelling parameters, see (Rabonza et al., 

2020). 

Results 

The results of the counterfactual analysis show that the retrofit program saved hundreds of 

lives. In the realised scenario of retrofitted buildings, 7 out of the 70 school buildings on 

average were predicted to collapse (10% collapse rate), whereas for the counterfactual case, 

33 out of the 70 school buildings were predicted to collapse on average (47% collapse rate). 

Figure 4 shows the distribution of fatalities due to collapsed school buildings in both scenarios. 

Based on the analysis of the counterfactual Nepal earthquake without the risk reduction 

intervention, we estimate that the lives of approximately 1014 students and teachers were 

saved in Kathmandu by the retrofit of just these 70 schools in this single event. This was 

obtained by comparing the estimated mean casualties (n = 289) for the realised retrofitted 

case, shown in yellow, and the much higher mean casualties (n = 1303) for the counterfactual 

unretrofitted case, shown in green. We note that the actual reported number of casualties in 

the 70 retrofitted schools is unknown, and likely much lower still than our prediction, since no 

retrofitted schools collapsed. This is likely due to better performance of school buildings than 

modelled according to their fragility curves. Hence the number of lives saved may be 

conservative. 

This case study highlights the invisible success of the SESP program amidst the 2015 Nepal 

earthquake,and illustrates how the counterfactual probabilistic analysis can be applied to 

celebrate previously invisible benefits in the context of a past disaster. 
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Figure 4: Relative number of lives saved due to the school retrofit policy implemented in Nepal before the 
2015 earthquake. Estimated fatalities for the realised retrofitted case and the counterfactual, unretrofitted 
case, where 70 school buildings were not retrofitted prior to the 2015 earthquake. Fatality estimates are 
based on 30,000 simulations and show an average of 1014 lives saved, calculated as the difference in the 
average number of fatalities for both cases. 

 
 

 
Cyclone evacuation in India 

Event description 

‘Extremely Severe Cyclonic Storm’ Fani hit the East Indian coast of Odisha on May 3rd 2019. 

With a maximum sustained surface wind speed of 204km/h, (RSMC New Delhi, 2019), it was 

the strongest tropical cyclone to strike the region since the 1999 Odisha super cyclone 

(WMO, 2019). 

Cyclone Fani left an official count of 89 fatalities in India and Bangladesh, 64 of them in the 

East Indian state of Odisha. Of the 64 deaths, 51 are extreme wind-related fatalities (i.e. 

crushed by uprooted trees, collapsed walls and roof) (News18 India, 2019; UNICEF, 2019). 

The state bore the brunt of the human and economic impact of the cyclone, with approximately 

16.5 million people in over 18,388 villages affected and approximately 362,000 houses 

experiencing catastrophic damage. Total damage and losses in the state was estimated to be 

3.5 billion U.S. dollars (Government of Odisha, 2019; Mishra and Ojha, 2020). 
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DRM intervention 

Despite the considerable impact on human lives and property, the damage caused by Cyclone 

Fani was small in comparison to the Odisha super cyclone of 1999, which resulted in 

approximately 10,000 fatalities and 4.5 billion U.S. dollars of damage (Kalsi, 2006). The 

reduced human and economic losses was partly a result of the fact that the observed peak 

storm surge height of 1.5m (RSMC New Delhi, 2019), was much below the 4m peak predicted 

(ECHO, 2019), as well as the 6.7m peak of the 1999 cyclone (Kalsi, 2006). At the same time, 

loss of life was also much reduced as a result of large-scale evacuation efforts taken by the 

government of Odisha, who evacuated approximately 1.55 million people towards 9,177 

shelters before the cyclone’s landfall. In contrast, at the time of the 1999 super cyclone, Odisha 

state only had 23 cyclone shelters for evacuation (IFRC, 2001). 

Probabilistic counterfactual analysis 

We calculate probabilistic lives saved as a result of the evacuation during Cyclone Fani through 

two counterfactual scenarios. We modelled the outcome of the realised flood event without the 

realised evacuation efforts, in comparison to the realised evacuation scenario. This is an 

example of Case B from Figure 1, where we highlight the success of the evacuation which 

otherwise went unnoticed by nature of its success. We also modelled the counterfactual 

realisations of Cyclone Fani with higher storm surge as originally predicted before the 

cyclone’s landfall, also without evacuation efforts. This represents the family of expected 

cyclone surges given what was known at the time, and against which the mass evacuation 

decision was made. This then is an example of Case D from Figure 1, where we highlight the 

success of the evacuation made invisible by the randomness of the hazard. 

Counterfactual realisations of storm surge were used to generate flood maps using the bathtub 

flood method (Yunus et al., 2016), and accounting for local tides, surge heights (GDACS, 2019) 

and elevation (Yamazaki et al., 2017). We used a tide level of 1.5m which corresponds to the 

average monthly high tide in Puri (Meteo365, 2021). Exposed population was derived from 

gridded population density data (WorldPop, 2021), downscaled with higher resolution World 

Settlement Footprint map (Marconcini et al., 2020). The result is a detailed 10m resolution 

population density map for the area. A flood fatality model was used to estimate fatality rate 

as a function of water depth, as per the cumulative lognormal distribution model by Jonkman 

(Jonkman, 2007): 

𝐹𝐷(ℎ) =  ϕ (
(lnh) − 7.6

2.75
) 
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Figure 5. Modelled flood depths for the predicted and realised cyclone flood event with the population 
exposure per hectare. The predicted event uses a 3.6m storm surge. 

 
A limitation of the approach is the high uncertainty in both the fatality model and the initial 

storm surge height. To take these uncertainties into account, Monte Carlo analysis was 

performed to simulate different storm surge heights and different parameters of the fatality 

function. The storm surge height was sampled from a normal distribution with a mean of 3.6m 

and standard deviation of 1.1m, matching the range of estimates before the cyclone made 

landfall (Mohanty, 2019; ECHO, 2019). The mean parameter of the fatality model was likewise 

treated as uncertain and normally distributed with standard deviation of 1m. Figure 5 shows 

the modelled flood depths and population exposure per hectare with both the realised and 

predicted storm surge heights. 

We make note that the model only accounts for fatalities resulting from flooding, and therefore 

excludes those caused by winds. This is because the majority of cyclone fatalities in high-fatality 

cyclonic events are a result of floods, as was the case in the 1999 super cyclone (Kalsi, 2006). 

However, it should be noted that this limitation would lead to an underestimation of fatalities in 

our models. 

We note that the storm surge level of 1.5 meters is in the same order of magnitude as the 

vertical uncertainty in the DEM. This is a common limitation for flood modelling with global data 

and the Multi-Error-Removed Improved-Terrain DEM we applied was specifically made to 

reduce this issue (Yamazaki et al., 2017). The results remain uncertain, and are therefore to 

be used for illustrative purposes. Higher resolution DEM, tidal, exposure and fatality models 

would improve the counterfactual predictions. 
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Results 

In reality, Cyclone Fani caused 63 fatalities. The first counterfactual scenario, using the realised 

surge height but counterfactual absence of evacuation, would have led to an estimated 767 

fatalities (mean = 767, Interquartile range = 240 - 970). The second counterfactual scenario, 

using the counterfactual storm surge that was expected prior to landfall and absence of 

evacuation, would have led to an estimated 10380 fatalities (mean = 10380, Interquartile range 

= 2750 - 13200). Figure 6 shows the distribution of fatalities as a result of flooding in both 

scenarios. 

The first counterfactual scenario highlights the benefits of life-saving interventions in a realised 

hazard event in this case, the evacuation efforts during Cyclone Fani. The second 

counterfactual scenario highlights the fact that the full benefits of the evacuation efforts may 

have been partially obscured by the lesser severity of the realised hazard. 

Figure 6. Estimated fatalities for actual and counterfactual cases. The counterfactual cases correspond to 
the realised storm surge with no evacuation, as well as the expected storm surge (against which the 
evacuation plan was made) with no evacuation. The estimates are based on 250 and 1,350 simulations 
respectively. 

 

 

 
Through this lens, it can be seen that the effective evacuation of coastal communities 

preceding Cyclone Fani is associated with an estimated 704 lives saved in the realised storm 

surge event, and 10317 lives saved in the predicted storm surge event. 

This scenario thus highlights the usefulness of our model in drawing attention to potential 

’invisible’ benefits of risk reduction interventions, some of which may otherwise not be fully 

realised or acknowledged after a hazard event with a lower-than-expected severity. In doing 

so, it further highlights how our models may allow us to better monitor progress in disaster risk 

reduction independent of the realised outcome of such interventions. 
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Success made invisible due to yet unrealised benefits 

The two case studies illustrate the use of counterfactual probabilistic risk analysis to highlight 

the lives saved by DRM measures. While these are in the context of earthquakes and floods, 

the methodology can be adapted for a wide range of hazards and measures. In Table 1, we 

present a list of DRM interventions implemented in various regions of the world. This is a small 

reflection of the diversity of measures which should be analysed, celebrated and shared even if 

their benefits have yet to be realised. Each intervention targets one or more risk components, 

which can help define the counterfactual scenarios required for evaluation. 

Measuring probabilistic lives saved as a result of an intervention should become standard 

practice in the DRM field. The shift in focus from specific outcome to probabilistic lives saved 

offers a framework to reward individuals and institutions who have displayed political bravery 

in committing to the implementation of DRM measures despite time delay in the realisation of 

its benefits, lack of follow up risk auditing and other challenges. This simple gesture can 

motivate further good work. 

Table 1. Table of example disaster risk reduction measures (DRR) for which counterfactual risk analysis 
can be applied for evaluation. The risk components affected are coded as H for hazard, E for exposure and 
V for vulnerability. 

DRR Measure Risk 
Component 

Example 

Earthquake   

Reconstruction and retrofit V In San Francisco, a mandatory retrofit program for older, wood- 
framed multi-family buildings with soft-story conditions was 
created in 2013 (SFDBI, 2021). 

Construction inspection V In Turkey, the 2001 Construction Inspection Law led to better 
building quality control (Gunes, 2015). 

Public awareness E, V In Kyrgyzstan, the safe evacuation of 32 children from summer 
camp after the 2011 M6.1 earthquake was attributed to 
preparedness exercises (ECHO, 2013). 

Flood   

Urban planning V In China, the ‘Sponge City’ concept was established in 2014 to 
promote filtration and storage of stormwater in highly urbanized 
areas (Chan et al., 2018). 

Flood management 
infrastructure 

E In the Philippines, a polder wall for protecting the Valenzuela-
Obando-Meycauayan (VOM) area was constructe in 2014 
(JICA, 2018). 

H In Netherlands, the Delta Works programme was implemented 
between 1954 and 1997 to construct dams and other flood 
protection infrastructure (Kind, 2014). 

Emergency response V In Gambia, integration of DRR interventions in emergency 
response proved its worth during the 2012 floods (ECHO, 
2013). 

Typhoon/Tropical Storm   

Public awareness E, V In the Philippines, explanations from barangay officials on the 
deadliness of storm surges led to a successful preemptive 
evacuation on Manicani Island implemented two days before 
Typhoon Haiyan hit. As a result, only one out of more than 3000 
residents died (Canoy, 2013; Lagmay et al., 2015). 

Early warning system E In Bangladesh, a Doppler Radar system, which gave timely 
warning, was partly credited for the lower than expected 
casualty count of 190 during Cyclone Aila in 2009 (Izumi et al., 
2019). 
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Storm risk management E, V In Myanmar, cyclone shelters provided refuge during Cyclone 
Mahasen in 2013, their year of completion (JICS, 2013). 

Landslide/Avalanche   

Early warning system E In Bolivia, no victims were reported after the 2011 mega 
landslide due to the evacuation effort informed by a 
geodynamic hazard monitoring system (ECHO, 2013). 

Mitigation infrastructure E, V In Tajikistan, a 120m long mudflow channel was rehabilitated to 
protect a village of 1760 inhabitants (UNDRR, 2006). 

Tsunami   

Public awareness E, V In Indonesia, disaster risk education was provided in schools 
around Ciletuh-Palabuhanratu UNESCO Globa Geopark 
(Muslim et al., 2019) 

Fire/Drought   

Early warning system E In Lebanon, a wildfire forecast system using dynamic weather 
forecasts was launched in 2016 (Mitri et al., 2017). 

Irrigation H, E, V In Malaysia, irrigation recycling which begun in 1970 saved 
more than 3000ha of crop in the 2015-16 drought (JICA, 2018). 
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Discussion 

The Nepal 2015 earthquake case shows that even in the midst of a tragic disaster, there are 

often successes to celebrate that prevented many more lives from being lost. Our 

counterfactual analysis demonstrated that the successful earthquake retrofit of 300 school 

buildings as part of the government-led School Earthquake Safety Program saved hundreds of 

probabilistic lives. The benefits of the retrofitting program were even further obscured since the 

earthquake occurred on a Saturday while school sessions were off (luckily!). 

The 2019 Cyclone Fani made landfall on the Indian coast without leading to the major disaster 

feared. This was the result of the evacuation of 1.55 million people, and the fact that the 

predicted extreme storm surge didn’t occur. The result was that ’only’ 64 fatalities occurred in 

the case study area (UNICEF, 2019), the majority of them wind fatalities (News18 India, 2019). 

This is relatively few compared to similarly severe cyclones in the region. We applied our 

probabilistic counterfactual analysis to look at what would have happened without evacuation 

and what would have happened if the predicted storm surge had occurred. We found that the 

evacuation probably saved hundreds of lives and if the predicted storm surge had occurred 

the lives saved could have reached in the thousands to even ten thousands. This 

counterfactual analysis shows that the evacuation was necessary, successful, and presents 

important lessons for other regions and countries impacted by tropical storm hazards. 

The case studies utilise first order risk analyses and contain numerous modelling 

uncertainties. The studies are therefore intended to serve as demonstration of the probabilistic 

downward counterfactual analysis approach, but the specific results and estimated lives saved 

have significant uncertainty, as demonstrated by the wide distributions of simulations shown 

in Figure 4 and Figure 6. 

The case studies focus only on loss of life reduction. Other metrics of successful DRM 

interventions include reducing injuries, number of affected or displaced people, building 

damage, business interruption, livelihood losses, damage to cultural heritage, psychological 

distress and much more. Probabilistic downward counterfactual analysis can be applied 

equally for these alternative metrics. 

Furthermore, it is becoming increasingly recognised that the benefits of DRM activities can go 

beyond impact reduction and loss-avoidance, and in fact should be designed as such. For 

instance, the reduction of background risk encourages positive risk taking (e.g., investment in 

productive assets, entrepreneurial activities), enables long term financial planning (e.g., to 

build up savings), and potentially increases the value of protected lands (Tanner et al., 2015).  

Investments in multi-purpose disaster risk reduction measures can also yield benefits that are 

unrelated to the reduction of background risks. These co-benefits can be economic (e.g., 

increased agriculture productivity with improved irrigation for drought management), political 

(e.g., improved governance through strengthening the disaster risk management capacity of 

civil society), social (e.g. increased parks and green leisure areas), and/or environmental (e.g., 

carbon sequestration, sediment and nutrient retention from protection or afforestation of 

wetlands). The nature and level of these co-benefits depend on the design of the disaster risk 

reduction measure (Tanner et al., 2015). 
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Conclusions 

The field of disaster risk management faces the challenge of its failures being catastrophic while 

its successes go unnoticed. This makes it difficult to identify, celebrate, and spread positive 

lessons learned that could be emulated elsewhere, or to incentivise proactive decision-making 

on the basis of recognised successes. We have identified four types of situations where 

successful DRM interventions are made invisible: (i) success made invisible in the midst of 

broader disaster, (ii) success made invisible by nature of the success, (iii) success made 

invisible due to yet unrealised benefits, (iv) success made invisible due to randomness of 

specific outcome. 

We propose and demonstrate the use of probabilistic downward counterfactual analysis to 

shed light on these otherwise invisible successes. Downward counterfactual analysis is the 

counter-intuitive process of understanding how a realised event could have been worse, as a 

way to highlight the benefits of an intervention. This application goes beyond the existing uses 

of counterfactual risk analysis that focus on pointing out worse potential outcomes for the 

purpose of insurance, preparedness, future mitigation and learnings from failures in DRM. 

We further use the risk analysis framework to ascribe estimated probabilities to the simulated 

counterfactuals. The estimated probabilities constrain the counterfactual exploration to realistic 

scenarios. As in all risk analyses, the process requires scrutiny and transparency in the 

assumptions, data and analysis conducted. Doing so aims to avoid both misuse of the 

counterfactual framework and misrepresentation of the benefits of DRM. An example of misuse 

would be inflating the benefits of a DRM intervention by cherry-picking ‘ideal’ counterfactuals 

e.g. a hazard scenario too extreme and unrepresentative of the current knowledge of the 

hazard that the calculated lives saved would inflate. 

An important concept that emerges from this study is that the value of a risk reduction 

intervention should not be judged on the basis of specific outcomes, but also on the basis of 

a broader exploration of potential outcomes. The same good decision may seem like overkill 

against a specific outcome, or may seem completely insufficient judged against another. 

Especially in a field focused on long-term resilience and often rare (therefore volatile) events, 

realised outcomes bias our perceptions and judgements. This is also relevant to the monitoring 

of risk reduction targets, including those of the Sendai Framework (UNISDR, 2015). Mortality 

on any given year, or specific place, may not reflect adequate or inadequate disaster planning, 

but rather chance outcomes. Encouraging long-term resilience, which may not ‘pay-off’ for 

decades (e.g. for climate-adaptation), will therefore require a shift in focus from realised 

outcome to unrealised risk reduction. 

The innumerable successful DRM interventions implemented in communities worldwide (e.g. in 

Table 1) represent a critical data-set to learn from, adapt, share and implement such activities 

where they are further needed. This is only possible if these successes are identified, analysed 

and celebrated. We propose the use of probabilistic downward counterfactual analysis to 

highlight and quantify the benefits of DRM interventions that otherwise remain invisible. This 

can serve to lift up the iterative, long-term, humble, dedicated and politically courageous actions 

required for long-term resilience building. 
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